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The nitro-Mannich (aza-Henry) reaction provides synthetically Scheme 1 . Dinucleating Schiff Base Ligand 3 and Proposed
versatileg-nitroamines (eqs 1 and 2) that can be converted to 1,2- Structure of Heterobimetallic Cu/Sm/3 Complex with ArOH

S . Additive
diamines,a-aminocarbonyl compounds, and others. Tremendous
effort has been devoted to develop catalytic enantioselective variants
over the past decadeSince our reports using heterobimetallic 1) Cu(OAc)
metal-BINOLate complexed diastereo- and enantioselective reac- =N N= 2) Sm(O-lPr2)3 _N\C N=
tions with various nitroalkanes have been realized using metal OH HO _ o u\O
complexe®3 and organocatalystssuch as thiourea$; a chiral + ArOH or
proton catalyst¢ and cinchona alkaloid$:5 Although those OH HO Ar = 4-1Bu-CgHy o~ (I)A\O
—4 i1 : : . 3 r
catalysts— gaveanti-1 in good yield ar_ld high stgreoselecuw_ty Cu/Sm/3 + ArOH
(eq 1)8 there are no reports ofgynselective catalytic asymmetric
nitro-Mannich reaction (eq 2)Herein, we report the utility of a ~ Table 1. Optimization of Reaction Conditions
heterqblm_etalllc Cu_Sm—Schlff ba_ts_eB catqus_t to realize ayn _Boc catalyst (10 mol %) Boc.
selective nitro-Mannich reaction, givirgyn2 in high synselectivity IN (M'/M2/ligand 3)
(>20:1 dr) and enantioselectivity (up to 98% ee). The present Ph) + ENG, THF, —40 °C, 23 h Ph);q\f/Me
system complements the previously reported metR&#s. 4a 5a 2aaNO,
PG. I PG. 7 metal  sources  MYMZ3 yield dre % ee
anti NH NH entry mia Mm2b ratio additive (%) (syn/ant) (syn)
\-P8 R)\:/R = R)\(NOZ O 1 Cul) La 111 none 73 31 5
J . rF(' | 1 N02 R' 2 Cu(ly Pr 1:1:1 none 82 11 9
R PG r pg 3 3 Cu(l) Sm 1:1:1 none 96 >20:1 80
NO; “NH “NH 4 Cu(ll) Eu 1:1:1  none 93 >20:1 64
— R — NO 2 5 Cu(ll) Dy 1:1:1  none 89 71 48
syn R)\I/ R)\:/ 2| @ 6 zZn(l) Sm 1:1:1  none 0 - -
2 NO, | R 7 Mg(l) Sm 1:1:1  none 0 — -
8 Ni(ll) Sm 1:1:1 none 0 - -
o . L . 9 Rh(l) Sm 1:1:1 none 90 1:3 a1
As a part of our continuing project on asymmetric bifunctional 4 cul) - 1:0:1  none 0 — _
catalysis, we developed various heterobimetallic complexes using 11 cu(ll) - 1:0:1 iPRNEtE 0o - -
BINOL derivatives as ligands.None of the metatBINOLate 12 Cu(l) - 1:.0:1  iPrpNEt 24 21 P
complexes screened, however, were suitable to realizyna 13 - Sm  0:1:1  none 14 2:1 29
- - - . . 14 Cu(ll) Sm  1:0.5:1 none 14 16:1 3
selective nitro-Mannich reaction. Therefore, we screened other chiral 15 Cu(l) Sm 121  none 00 71 3
scaffolds that can incorporate two different metals and found that 16 cu@l) Sm 1:1:1  phenbl 81 >201 85
the dinucleating Schiff base ligar&i(Scheme 1) was a promising 17 Cu(l) Sm 1:1:1  2,64Bu)-phenot 91 >20:1 76
candidaté. The initial optimization studies witiN-Boc imine 4a 18 Cu() sm 111 4Bu-phenol 96 >20:1 94
nd nitroethan r mmarized in Table®#9Th mbination ) : -
af d nitroethanéaare summar he(I:'i ab eﬁ e combinatio 3 MY(OAc), was used® M2(O-iPr); was used? Diastereomeric ratio was
of Cu(OAc), and La(OiPr); with ligand 3 afforded productaa determined byH NMR analysis ¢ Enantiomeric excess ahti-isomeré 20

slightly in favor of thesynisomer (entry 1syn/anti= 3:1), despite mol % of iPLNEt was used' 100 mol % ofiPr,NEt was used? (S9)-
poor enantioselectivity (5% ee). Rare earth metals affected both Enantiomer was majof. 10 mol % of ArOH was used.

synselectivity and enantioselectivity (entries3), and Sm(QOPr) (entries 16-18)2 Under the optimized condition®aawas obtained
gave the best selectivity (entry 8yn/anti= >20:1, 80% ee). Cu- in 96% yield,syn/anti= >20:1, and 94% ee (entry 18).

(I1) was also essential to realize high selectivity and good reactivity  The heterobimetallic Cu/Si®/complex with a 4tBu-phenol
(entry 3 vs entries 69). Neither Cu(OAg) nor Sm(OiPr); alone additive was applicable to variod-Boc imines (Table 2)° Aryl
gave good results (entries 10 and 13). Cufllpwis acid in the imines with either an electron-donating substituent or an electron-
presence of amine base resulted in poor reactivity (entry 11, 20 withdrawing substituent, as well as heteroaryl imite afforded
mol % of amine, 0% yield) and selectivity (entry 12, 1 equiv of the products in higlsynselectivity and ee (entries-¥).11 Readily
amine, 24% yield, 1% esyrlanti = 2/1), implying the importance  isomerizable alkyl Boc iminéh'? was also applicable, giving the
of Sm(O4iPr)s. The ratio of Cu/Sm/ligan® was also critical for product in good ee (entry 7). Higynrselectivity was also achieved
good selectivity (entry 3 vs entries 14 and 15). To further improve with nitropropane5b (entries 9-11). Catalyst loading was suc-
the enantioselectivity, achiral additives were screened, and phenolcessfully reduced to 5 and 2.5 mol % without any loss of
showed positive effects (entry 16, 85% ee). Further screening of stereoselectivity. With 2.5 mol % of catalyst, nitro-Mannich adduct
phenolic additives revealed thatBu-phenol gave the best results  2aa was obtained in 99% vyieldsynanti = >20:1, and 97% ee
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Table 2. syn-Selective Catalytic Asymmetric Nitro-Mannich
Reactions with Various N-Boc Imines 42

.Boc Cu/Sm/3 = 1:1:1 complex Boc.
N (2.5-10 mol %) NH
U+ RCH,NO, _4-Bu-phenol (10 mol %) R'
5a: R'=-CHgz THF, —40 °C
4 5b:R'=-CH,CHs 2 NO,

time  yield® dre % ee

entry imine (R) nitroalkane  product (h) (%) (syn/ant) (syn)
1 GHs- (49 ba 2aa 23 96 >20:1 94
24 2-naphthyl- gb) 5a 2ba 48 87 >20:1 93
3 4-Me-GHgs- (40 5a 2ca 48 90 =>20:1 98
4 3-Me-GH4- (4d) 5a 2da 48 77 >20:1 96
5 4-MeO-GH4- (4¢) 5a 2ea 48 87 >20:1 94
6  4-Cl-GHs- (4f) 5a 2fa 48 81 =>20:1 90
74 2-furyl (49) 5a 2ga 48 71 >20:1 91
84 CgHsCHCHy- (4h) 5a 2ha 48 62 >20:1 83
94 CeHs- (4) 5b 2ab 44 84 >20:1 88
10 4-Me-GHg- (40 5b 2cb 48 68 >20:1 95
11 4-MeO-GHs- (4¢ 5b 2eb 48 64 >20:1 91
122 CgHs- (48) 5a 2aa 44 92 >20:1 96
13 CeHs- (4a) 5a 2aa 72 99 =>20:1 97

aReaction was performed in THF (0.2 M on imingsat —40 °C using
10 mol % of Cu/SnB complex and 10 mol % of #Bu-phenol unless
otherwise noted? Isolated yield ¢ Diastereomeric ratio was determined by
IH NMR analysis. Minoranti-isomer was not detected H NMR (>20:1
dr). 9 Reaction was run at50 °C. €5 mol % of Cu/Sn3 complex was
used.f 2.5 mol % of Cu/Sn8 complex and 5 mol % of 4Bu-phenol were
used.

Scheme 2 . Conversion to syn-1,2-Diamine?

BOC\NH BOC\NH BOC\NH
Me )\rMe b )\rMe
Ph 99% Ph —>98% Ph
2aa NO, 6 NHy 7 NHAc

aReagents and conditions: (a) NaBHNiCl,-6H,0, MeOH, 0°C, 15
min, 99%; (b) AgO, E&N, CH.CIy, rt, 30 min, 98%.

(entry 13). To demonstrate the utility Bfnitroamine productaa
was successfully converted ingyn1,2-diamine6 in 99% yield
without epimerization using NaBHand NiClL (Scheme 2).

In the present reaction, both Cu(OA@nd Sm(OHPr); were
essential for good reactivity and selectivity. The 1:1 ratio of Cu-
(1) and Sm was also crucial (Table 1nd the addition of 4Bu-
phenol had beneficial effects on enantioselectivity. Sterically
hindered 2,64Bu),-phenol was not effective as an additive (Table
1, entry 17), suggesting thattBu-phenol would work not as a
simple proton source but as an achiral ligand. In ESI-MS analysis,
peaks corresponding to a Cu/Swomplex trimer and oligomers
were observed in the absence aBl+phenol. With 4tBu-phenol,

a new peak corresponding to a monomeric CufSrs/ 1:1:1

Cu and Sm metals were essential to realize Hghselectivity.
Further mechanistic studies as well as applications of the present
heterobimetallic catalyst to other asymmetric reactions are in
progress.
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